
UCRL-TH-209234

Modelling the Shallow Water Equations in
Curvilinear Coordinates with Physical
Application

S. Wingenter

January 27, 2005



Disclaimer 
 

 This document was prepared as an account of work sponsored by an agency of the United States 
Government. Neither the United States Government nor the University of California nor any of their 
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for 
the accuracy, completeness, or usefulness of any information, apparatus, product, or process 
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any 
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, 
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United 
States Government or the University of California. The views and opinions of authors expressed herein 
do not necessarily state or reflect those of the United States Government or the University of California, 
and shall not be used for advertising or product endorsement purposes. 

 
 
 

 

 This work was performed under the auspices of the U.S. Department of Energy by University of 
California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48. 
 



MODELLING THE SHALLOW WATER EQUATIONS IN

CURVILINEAR COORDINATES WITH PHYSICAL APPLICATION

A Thesis

Presented to the

Faculty of

San Diego State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

in

Computational Science

by

Suzanne Wingenter

November 1 2004



THE UNDERSIGNED FACULTY COMMITTEE APPROVES

THE THESIS OF SUZANNE WINGENTER:

Jose Castillo, Chair Date
Computational Science Research Center

Ricardo Carretero
Department of Mathematics and Statistics

Victor M. Ponce
Department of Civil Engineering

Carlos Torres
Universidad Autonoma De Baja California

SAN DIEGO STATE UNIVERSITY

November 1 2004



iii

ACKNOWLEDGEMENTS

It is amazing the lengths to which scientific achievement has grown through com-

putational experimentation, but there still must be strict adherence to physical behavior

in the real world. No matter how much further we are to go down this road of replac-

ing expensive physical experimentation with cheaper computational simulation, no study

should be complete without some validation of results. But as fields of study narrow, and

with the advent of multi-disciplinary degrees, there is not enough time to do everything

without collaborative efforts.

Thanks to Dr. Jose Castillo for the encouragement and patience. Thanks to Dr.

Carlos Torres for the endless hours of oceanography explanation. Thanks to Dr. Vic-

tor M. Ponce for planting the seed that would grow into this project, and providing a

wonderful starting point. In addition, thanks to Dr. Ricardo Careterro for always sup-

plying a fresh perspective. Finally, I wish to thank Dr. Petri Fast of Lawrence Livermore

National Laboratory for all his generous advice.

Work on the simulations done with Overture in Chapter 6 were performed at Lawrence

Livermore National Laboratory during the summer of 2004. I wish to thank the Lab for

the wonderful opportunity. This document has been reviewed and released under UCRL

number: ***********.



iv

TABLE OF CONTENTS

PAGE

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

CHAPTER

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Included in this Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2. CARTESIAN EQUATIONS AND PROBLEM DEFINITION. . . . . . . . . . . . . . . . 6

2.1 Bed Friction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Eddy Viscosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Wind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3. TRANSFORMING THE EQUATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4. OVERVIEW OF THE NUMERICAL SCHEME . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.1 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5. NUMERICAL RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5.1 Propagation of a Surface Wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5.1.1 Short Time Run Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.1.2 Long Time Run Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
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CHAPTER 1

INTRODUCTION

The goal of this project is to provide the capability for simulating fluid flow on

complicated geometries, such as in the Bahia de Todos Santos. The Bahia de Todos

Santos is a bay situated in the northwest corner of Mexico, off the coast of Ensenada

and south of San Diego, California, USA. Figure 1.1 shows the Bahia de Todos Santos.

It is part of an image taken from the Moderate Resolution Imaging Spectroradiometer

(MODIS) sensors on the Aqua and Terra satellites in late June and early July 2003 [8].

Roughly 200 square kilometers in size, the bay also contains two islands off the peninsula

of Punta Banda. Characteristics of flow in this bay are driven by the moon tide (M2)

and wind forcing [9].

Figure 1.1: Satellite image of the Bahia de Todos Santos. Credit: Jacques De-
scloitres, MODIS, Rapid Response Team, National Aeronautics and Space Administra-
tion (NASA)/Goddard Space Flight Center (GSFC). “Fires in Northern Baja California,
Mexico (5 of 7),” NASA Visible Earth Website, 2003. [8]

It is important to understand the fluid dynamics in bays such as the Bahia de Todos

Santos because of the wide range of dependencies on the flow such as bay ecosystems,

coastal erosion and pollution dispersion [6]. To study any of these in a lab is difficult and

expensive; for this reason, computer simulation plays an important role in investigating
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flow phenomena in large bodies of water.

Common to the computing standards of 1991, the previous study on the Bahia de

Todos Santos used a relatively coarse geometry on a Cartesian grid, see Figure 1.2 [9].

This grid lacks the accuracy common to today’s computing standards to represent the

dynamic geometry of flow fields such as the bay. The kilometer-by-kilometer grid cells

do not adequately capture the island geometry, since the islands are little bigger than

the grid cell.

Figure 1.2: Grid used by in previous study of the Bahia de Todos Santos [9]. F.J. Gavidia
Medina Espinoza, M.L. Argote and A. Amador Buenrostro. Wind- induced circulation
in Todos Santos Bay, B.C., Mexico. Atmosphera, 4:101-115, 1991.

It is the objective of this study to provide a means to more accurately represent

the geometry of the bay for simulating the shallow water equations by using curvilinear,

overset grids. By transforming the shallow water equations to curvilinear coordinates

and using a finite difference scheme, it is possible to simulate this problem on complex

geometry. Figure 1.3 shows the transformation from Cartesian to curvilinear coordinates.
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Figure 1.3: Transformation from Cartesian coordinates to curvilinear coordinates.

By using overset grids, the capability of the algorithm is expanded to include complex

geometry that is not suitable for a single grid. Overset grids using the Overture software

framework easily allows for the inclusion of islands, see Figure 1.4.

Figure 1.4: Overset grid of the Bahia de Todos Santos.
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It is important to note that this study is focused on expanding the capability of

solving the shallow water equations with the bay in mind, rather than an oceanographic

focus on solving the particular problems of the bay itself. The examples in this study

show the feasibility of the method presented here in solving problems of this nature. The

increased accuracy and efficiency of this method over the previous study of the Bahia de

Todos Santos lies in the ability to change the geometry without changing the algorithm.

Flows near the coastline can be more accurately reproduced with the inclusion of more

details in the grid. Though the set up of boundary conditions and other features of each

geometry — such as tides, wind, and bottom friction — need to be configured for each

particular problem, the solution algorithm is independent of the geometry.

1.1 Previous Work

There is a wide range of finite difference studies in the area of shallow water equations

available in the literature [1, 2, 4, 6, 12, 19, 20, 22, 23, 24]. The governing equations

are derived from the equilibrium equations of horizontal forces and the mass continuity

equation for incompressible fluid [17]. Leendertse was the first to modify an alternating

direction implicit (ADI) scheme to split the two-step method to include an implicit

and an explicit stage for each half time step [19]. Ponce used this same ADI method to

study recirculation effects in simple channel configurations for Cartesian coordinates [23].

Johnson used the semi-implicit ADI method to solve the nonlinear transformed equations

in general coordinates [20]. A staggered grid was used by Scott and Barber, who solved

the explicit transformed shallow water equations; though effective stresses were not used

for this study, they did employ a wetting and drying scheme [25]. Borthwick and Barber

finally applied the modified alternating direction implicit scheme of Leendertse to the

complete, nonlinear, transformed shallow water equations [4]. Casulli developed a semi-

implicit algorithm for the fully transformed shallow water equations which currently

includes both 2-D and 3-D solvers that have been used to model behavior, among other

places, the San Diego and the San Francisco Bays [6]. Current areas of interest in the

development of computationally modelling the shallow water equations branches out into
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the study of island wakes [1, 12, 22], near-shore circulation and wave breaking effects [26],

wetting and drying schemes [2] and parallelization [24]. While there are many forms of the

equations, this study uses the notation and form of the equations as given by Borthwick

and Barber [4].

1.2 Included in this Study

The scope of this work includes the introduction of the shallow water equations and

notation, as well as the extensions to the shallow water equations such as how the bed

friction, eddy viscosity and wind stresses are applied (Chapter 2). The equations of mo-

tion are transformed to curvilinear coordinates in Chapter 3. The next chapter, Chapter

4, discusses in detail the discretization implemented and the boundary conditions used

for this study. These three chapters are considered an extension to the introduction to

the problem before the results are shown. Initially, the curvilinear form of the shallow

water equations is implemented on single grids to produce convergence results for verifi-

cation and run some initial physical tests to explore the limits behavior of the algorithm

(Chapter 5). Once verification with the physical tests is established, the algorithm is

then expanded to include overset grids using Overture [7]. Results from the simulation

of the Bahia de Todos Santos are presented in Chapter 6. Concluding remarks in Chapter

7 will discuss conclusions and areas needing to be addressed in future work.
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CHAPTER 2

CARTESIAN EQUATIONS AND PROBLEM DEFINITION

For the shallow water equations to be physically valid, several assumptions need to

be made about the system being modelled. The body of water must be shallow with

relatively uniform density, ensuring that layering effects are not prominent in describing

the general flow field. The water needs to be well mixed so that upwelling does not

significantly affect fluid flow. Further, the average velocity profile in the vertical direction

must be, for the most part, uniform so that an averaged velocity will accurately describe

the total direction and magnitude of the flow [23]. In these instances (such as a shallow

coastal area, river or lake), the shallow water equations can be used to predict behavior.

For a presentation of the physical variables used in this document, refer to Figure 2.1.

Figure 2.1: Problem definition.

For the test cases leading up to the Bahia de Todos Santos simulation, the physical

sizes of the test grids are small enough to make the Coriolis force negligible, and is not

included in the code even though Coriolis forces do contribute to the flow [9]. Though
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it is problematic to not include the Coriolis force for the bay simulation, it is considered

less of a problem than not including the bottom bathymetry data which also did not

get included in the simulation for this thesis project. The depth averaged, shallow water

equations are [4],
∂ζ

∂t
+

∂ (uD)

∂x
+

∂ (vD)

∂y
= 0, (2.1)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= fcv − g

∂ζ

∂x
+

τwx − τbx
ρD

+
1

ρD

[

∂ (DTxx)

∂x
+

∂ (DTxy)

∂y

]

, (2.2)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −fcu− g

∂ζ

∂y
+

τwy − τby
ρD

+
1

ρD

[

∂ (DTxy)

∂x
+

∂ (DTyy)

∂y

]

, (2.3)

where x and y are the Cartesian physical coordinates; u and v are the x and y respective

depth averaged velocities; ζ is the surface elevation; g is gravity; τbx and τby are the bed

frictions in the x and y directions; τwx and τwy are the wind forcing terms in the x and y

directions; ρ is water density; fc is the Coriolis parameter; the local water column height

is D = h+ζ, where h is the constant depth measured from still water level. Txx, Txy, and

Tyy are the effective shear stresses. Implementing Boussinesq eddy viscosity, the effective

shear stresses can be written in the following form [4],

Txx = 2ρν
∂u

∂x
, (2.4)

Txy = ρν

(

∂u

∂y
+

∂v

∂x

)

, (2.5)

Tyy = 2ρν
∂v

∂y
, (2.6)

where ν is the eddy viscosity coefficient.

2.1 Bed Friction

A Chézy expression is used for the bed shear stress components, τbx and τby, in addi-
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tion to the quadratic friction law (relating bed shear stress to depth averaged velocity):

τbx
ρ

=
g

C2
u
(

u2 + v2
)

1

2 , (2.7)

τby
ρ

=
g

C2
v
(

u2 + v2
)

1

2 , (2.8)

where g is gravity, and C is the Chézy coefficient [23].

There are other means of expressing the bed friction such as Manning’s equation ,

τbx
ρ

=
n2g

D1/3
u
(

u2 + v2
)

1

2 , (2.9)

τby
ρ

=
n2g

D1/3
v
(

u2 + v2
)

1

2 , (2.10)

where n is the Manning roughness factor [23].

2.2 Eddy Viscosity

There are many ways to implement the eddy viscosity terms in the momentum

equations [13]. A brief mention of some of these approaches is in order because the

simplest method — constant eddy viscosity — will be implemented here, but any future

work in this area must take into account a more substantial turbulence model. For

turbulence, a one or two equation model is necessary in which ν is solved at each time

step by additional equations (such as the k-ε turbulence models) [13]. There are also

simple algebraic relationships that can be implemented to vary the eddy viscosity across

the domain depending on the depth and magnitude of the flow.

For this project, constant eddy viscosity was selected because of simplicity. This

option, however, is problematic in that it is not well-defined what the value of the coef-

ficient of eddy viscosity, ν, should be for different grids. Historically, a value has been

selected on the order of the width of the shear layer and the magnitude of the difference

in the velocities [10, 18, 27]. For this study, values for ν are chosen arbitrarily but with

some guidance from theory. Theoretically, ν is chosen to be the same order as the charac-
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teristic length times the characteristic velocity [3]. The final value is chosen on whether

the results seem, or can be proven to be, valid (the best case would be comparing results

with field data to select the appropriate values).

Unfortunately, this simple model is not desirable for simulations run on the Bahia

de Todos Santos and any further study on this project would demand the inclusion of a

more appropriate turbulence model.

2.3 Wind

While wind forcing can be used in this study, it is difficult to appropriately model

wind where the forcing takes place on an averaged velocity rather than a surface layer

of a three dimensional model (or at least some model capable of layering). Despite this

drawback, wind is included as a constant across the domain using the following expression

[3],
τwx

ρ
= K | w | wx, (2.11)

τwy

ρ
= K | w | wy, (2.12)

where K is the wind stress coefficient, | w | is the magnitude of the wind velocity, wx and

wy are the components of the wind velocity [3]. Magnitude for the wind stress coefficient

and wind direction for the Bahia de Todos Santos is dependent on seasonal conditions

and are taken from [9].
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CHAPTER 3

TRANSFORMING THE EQUATIONS

Transforming the equations from the physical coordinate system to a computational

domain (see Figure 1.3) is defined as, x = x(ξ, η), and y = y(ξ, η). To derive the

transformation of the derivatives to the computational domain, use the chain rule [14, 16].

The derivatives become,

∂

∂x
=

∂ξ

∂x

∂

∂ξ
− ∂η

∂x

∂

∂η
, (3.1)

∂

∂y
=

∂ξ

∂y

∂

∂ξ
− ∂η

∂y

∂

∂η
. (3.2)

By using the following relationships,

∂ξ

∂x
=

1

J

∂y

∂η
,

∂ξ

∂y
=
−1
J

∂x

∂η
,

∂η

∂x
=
−1
J

∂y

∂ξ
,

∂η

∂y
=

1

J

∂x

∂ξ
,

where,

J−1 =

(

∂x

∂ξ

∂y

∂η
− ∂x

∂η

∂y

∂ξ

)

,

then the following transformation equations can be used,

∂f

∂x
=

1

J

(

yη
∂f

∂ξ
− yξ

∂f

∂η

)

, (3.3)

∂f

∂y
=

1

J

(

xξ
∂f

∂η
− xη

∂f

∂ξ

)

, (3.4)
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where f is a function and xξ, xη, yξ and yη are the metric terms used for the computation.

Since the metric terms are determined by the grid and do not change over time, they will

be expressed in the simplified derivative form of xξ.

The transformed shallow water equations are,

∂ζ

∂t
+

1

J

[

yη
∂ (uD)

∂ξ
− yξ

∂ (uD)

∂η
+ xξ

∂ (vD)

∂η
− xη

∂ (vD)

∂ξ

]

= 0, (3.5)

∂u

∂t
+

1

J

(

yηu
∂u

∂ξ
− yξu

∂u

∂η
+ xξv

∂u

∂η
− xηv

∂u

∂ξ

)

= fcv −
g

J

(

yη
∂ζ

∂ξ
− yξ

∂ζ

∂η

)

+
τwx − τbx

ρD
+

1

ρDJ

[

yη
∂ (DTxx)

∂ξ
− yξ

∂ (DTxx)

∂η
+ xξ

∂ (DTxy)

∂η
− xη

∂ (DTxy)

∂ξ

]

, (3.6)

∂v

∂t
+

1

J

(

yηu
∂v

∂ξ
− yξu

∂v

∂η
+ xξv

∂v

∂η
− xηv

∂v

∂ξ

)

= −fcu−
g

J

(

xξ
∂ζ

∂η
− xη

∂ζ

∂ξ

)

+
τwy − τby

ρD
+

1

ρDJ

[

yη
∂ (DTxy)

∂ξ
− yξ

∂ (DTxy)

∂η
+ xξ

∂ (DTyy)

∂η
− xη

∂ (DTyy)

∂ξ

]

, (3.7)

where ξ and η are the computational coordinate directions. The transformed shear stress

equations are,

Txx =
2ρν

J

(

yη
∂u

∂ξ
− yξ

∂u

∂η

)

, (3.8)

Txy =
ρν

J

(

xξ
∂u

∂η
− xη

∂u

∂ξ
+ yη

∂v

∂ξ
− yξ

∂v

∂η

)

, (3.9)

Tyy =
2ρν

J

(

xξ
∂v

∂η
− xη

∂v

∂ξ

)

, (3.10)

where ν is the eddy viscosity. Furthermore, the friction, wind and Coriolis terms remain

the same as the Cartesian equations after the transformation.
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CHAPTER 4

OVERVIEW OF THE NUMERICAL SCHEME

The finite difference solution method used for this project is the second-order accu-

rate, explicit, Adams predictor-corrector, time-stepping scheme [11, 14],

uj,k
p = uj,k

n +
∆t

2

[

3(Ln
u)j,k −

(

Ln−1
u

)

j,k

]

, (4.1)

uj,k
n+1 = uj,k

n +
∆t

2

[

3(Lp
u)j,k − (Ln

u)j,k

]

. (4.2)

The method consists of two steps, a predictor step and a corrector step. Operator

L represents the right hand side of the finite difference equation (see Appendix C for a

definition of operator L) and up represents the predictor step. Centered differences are

used for all spatial derivatives.

It is appropriate to note that some methods employ a spatial u and v averaging in

some instances of the solution in the name of “depth averaging” [3]. This technique,

while useful in providing dissipation to the solution and hence stabilizing some solutions

that may otherwise be unstable, is not necessary. Indeed, it makes little sense to include

spatial averaging to account for depth information. The averaging is already included in

the way the equations are derived and hence not necessary to include here.

There are also examples of filtering or averaging routines used in studies that require

more stability [3, 23]. These filters are mainly used to dampen high frequency oscillation

errors in surface elevation that probably arise from time step errors and the fact that the

advection equation has no diffusive term. In this study, an added numerical diffusivity

term is included in the finite difference equation for the advection equation to dampen

errors in the solution. This term is used for the simulations done on the idealized island

and overset grids. For the idealized island simulation, high frequency oscillation errors

appear because of errors arising from the boundary conditions; for the overset grids,

oscillation errors occur due to the use of a fully centered grid.
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The numerical diffusivity added to the surface elevation equation is α∇2D, where

∇2D is represented with an undivided difference and α is the strength coefficient. This

term is added to the right-hand-side of the continuity equation and is approximated as,

α∇2D ≈ α
(

Dn
j+1,k − 2Dn

j,k +Dn
j−1,k +Dn

j,k+1 − 2Dn
j,k +Dn

j,k−1

)

. (4.3)

4.1 Boundary Conditions

Boundary conditions for this model are problematic. In theory, for subsonic flow,

two characteristics enter the system and one characteristic leaves the system (for open

boundaries); this would necessitate that two boundary conditions be set for inflow and one

for outflow [15]. In practice, however, this scheme does not work as well for boundaries

that are mixed inflow and outflow, such as in a bay where one boundary may handle

all in and out flow for the domain and may change over time. For geometries that are

relatively simple where inflow and outflow boundaries are definite, it is necessary to stick

to the two inflow and one outflow boundary condition set up.

For all of the simulations in this study up to the section on Overture results, strict

adherence to the characteristic study is followed. For inflow, one velocity component and

the surface elevation are given while the other velocity component is extrapolated. For

outflow, the surface elevation is given and both velocity components are extrapolated.

Extrapolation techniques are either zero or first order and are applied as the configuration

demands. First order extrapolation is used as a non-reflective boundary condition for

outflow [4]. For walls, nonslip boundaries are employed; the velocity components on the

boundary are zero while the surface elevation is extrapolated.

All test cases fall within the definition of subsonic flow; supersonic flow would require

a different set of boundary conditions. The Froude number, magnitude of the velocity

over the wave celerity (wave celerity is
√
gD), is output along the boundaries in the

program to make sure it is a value less than one. This ensures the flow is subsonic on

the boundary.
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For periodic boundaries, such as the boundary where the grid meets on the O-grid

(or Annulus grid), ghost lines are employed around the outside of the physical domain

where the values exiting the system are read back in as the inflow conditions. The value

replacement happens on two different lines, as follows: the inflow ghost line is set to the

line just inside the outflow boundary, while the inflow boundary is set to the outflow

boundary (“inflow,” and “outflow” in this case are merely labels for opposite grid edges,

and not an indication of the flow direction). The process is done for u velocity, v velocity

and surface elevation.

For special cases of mixed inflow and outflow boundaries, two boundary condition

schemes are attempted. The first is that the direction of the flow is tested along the

boundary to determine whether it is inflow or outflow. Once this is determined, the

appropriate number of boundary conditions are set. This seems to work for most of

the boundary except where the flow along curved boundaries (such as the Annulus)

reaches a transition from normal to perpendicular flow into the domain. Since a thorough

investigation of boundary conditions is beyond the scope of this study, smoothing in the

form of artificial viscosity is added to the surface elevation equation to deal with the

error that results from this boundary condition.

The other method of dealing with mixed inflow and outflow boundaries is to use zero

order extrapolation on those boundaries for all velocity and surface elevation [21]. This

extrapolation method is used for the simulations involving the Bahia de Todos Santos

grids, except for surface elevation values described by the M2 tide. While these boundary

conditions give stable and reasonable results for the simulations presented here, there are

issues with mass conservation that should be addressed for longer runs. Investigating

these issues requires stability analysis to be done on the boundary; this analysis is outside

the scope of this project.



15

CHAPTER 5

NUMERICAL RESULTS

Two channel configurations are used to verify that the finite difference scheme is

solving the model equations correctly. The first configuration studies the propagation of

a surface elevation wave as it moves along the direction of flow over time. The problem

is set up so that results can be analyzed as a strictly two dimensional problem, ignoring

v velocity. Periodic boundaries were used on all sides of the slightly curvilinear channel

so that the surface elevation wave does not propagate out of the domain. Convergence

studies are done on short simulation time and long simulation time.

Errors are measured using the Richardson resolution study technique for spatial res-

olution, and time resolution where spatial resolution does not give any useful information.

The recipe for a Richardson resolution study used here is three runs where the resolution

is doubled each time (twice as many points). Define Un, U2n, U4n as the approximated

solution on three grids, each getting finer in resolution than the previous (Un has the

fewest points). Each cover the same spatial area, but ∆x gets cut in half on the succes-

sive grid. Also define Ū as the exact solution. Assuming one compares only on the nodes

of the coarsest grid points, define,

En = Un − Ū ,

E2n = U2n − Ū ,

E4n = U4n − Ū ,

dn,2n = En − E2n,

d2n,4n = E2n − E4n,

where En, E2n and E4n are the error at each grid point; and dn,2n, d2n,4n are the difference

in error from one grid to its double resolution grid.

If we plug in the values and reduce the equations for d, which can be computed from
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the numerical solution and do not depend on the exact solution, we get,

dn,2n = Un − U2n,

d2n,4n = U2n − U4n.

Defining the rate of convergence of the method as ‖Ū−Un‖ ≈ c (∆x)p, c is a constant

and p is the convergence rate. Then, the error can be approximated as,

En ≈ cnp,

E2n ≈ c (2n)p ,

E4n ≈ c (4n)p .

Arranging dn,2n and d2n,4n again, we take the ratio of these to get,

d2n,4n
dn,2n

≈ c (2n)p − c (4n)p

cnp − c (2n)p
= 2p.

Then, to find the convergence rate p,

p = log2

(

d2n,4n
dn,2n

)

= log2

(‖U2n − U4n‖
‖Un − U2n‖

)

.

Convergence rates for this study use the L∞ norm to measure error. This is done by

taking the maximum error across the entire grid and using that as the measure of error.

There are two different time constraints on the system. The standard CFL (Courant-

Freidrichs-Lewy, also called the Courant condition) restriction for shallow water applies,

as well as a constraint that comes from the diffusive part of the momentum equations.

Note, ∆xmin in this case means the smallest grid spacing within x or y. The Courant

condition and diffusive time constraint are,

∆t ≤ ∆xmin√
gD

,



17

∆t ≤ b
(∆xmin)

2

ν
,

where b is some constant. For stability, the Courant number (Cr =
√
gD ∆t

∆x
) must be

less than one.

The second verification simulation tests flow through a straight channel with a linear

slope on a Cartesian grid. The Chézy friction law describes the steady state solution of

channels with this configuration. Flow is allowed to run downhill until it reaches steady

state, and convergence results are compared to the exact solution the Chézy friction law

describes. Convergence rates are measured similar to the above-described process, only

there is an exact solution to compare to instead of spatial refining.

Once the simulations are done to prove convergence, three more test problems are

selected to demonstrate the capabilities of the method on more complicated geometries.

An arbitrary river geometry is selected to test how the flow will behave on curved ge-

ometries that have expansion and contraction of the flow domain; in terms of what this

means to the goal of modelling the Bahia de Todos Santos, this gives an indication of

how the fluid reacts when the flow must move between the island and the peninsula.

Flow past a sea mount is selected to test how the flow develops to smooth changes in

bathymetry; in the Bahia de Todos Santos, there are a few places where the bathymetry

drops steeply to deeper water. Finally, flow past an idealized island tests the behavior of

the flow around a circle shaped island; the Bahia de Todos Santos has an island. These

three more physically interesting test cases indicate the kind of behavior expected to

contribute to the Bahia de Todos Santos flow and help explore the capabilities of this

particular model.

5.1 Propagation of a Surface Wave

The first simulation result presented tests the surface elevation wave propagation on

a simple curvilinear grid. This simulation is meant to test a propagating wave through

the system using a resolution study to check the convergence rates to make sure the finite
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difference scheme is solving the equations correctly. No friction or viscosity is used for

this simulation. The flow is directed in the direction of x with a speed of 1 m/s, while

no flow is set for the y direction. Wind and Coriolis forces are ignored. All boundaries

are periodic, employing the use of ghost points outside the physical domain. Figure 5.1

shows the curvilinear grid used for this simulation.

Figure 5.1: Curvilinear grid used for verification study, 100 x 50 meters.

The initial surface elevation is set to a sine wave of 0.05 meters in height. The wave

oscillates due to gravity in addition to propagating through the fluid with the momentum.

The bottom bathymetry is flat (meaning no variation in depth from the still water level)

and is set to 10 meters.

The grid is generated using a standard cosine, deviating slightly from the straight

channel flow of the Cartesian case. The physical boundary measurement of the channel

is 100 meters by 50 meters, employing 101 and 51 grid points. An extra grid point

is generated outside this physical boundary for the ghost point used for the periodic

boundary conditions.
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The solution algorithm is in both x and y directions, but results are presented as x-z

solution profile pictures for simplicity. Even though the solution algorithm solves across

the entire domain, the x-z profile results are the same due to the set up of the problem.

5.1.1 Short Time Run Results

As is evident by Figure 5.2, the surface elevation propagates through the domain

with the momentum. A time period is used that is consistent with the oscillation of

the surface elevation being minimal to see the forward movement of the wave. For the

short simulation time of 10 seconds, the wave has propagated forward 10 meters with no

apparent distortion and only slight dissipation.

Figure 5.2: Surface elevation profile plot for initial wave and after 10 seconds.

The results show the second order convergence rate one expects from this method,

see Table 5.1. The results also show that the round-off error present is maintained at

the double precision of the machine used in the code. Additionally, the plots of the error

analysis across the grid show that the error is smooth except for the places where the
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error decreases to the accuracy of the machine. Results of the error and convergence rate

of the resolution study are taken as the maximum of the differenced values between the

coarser grid and one of higher resolution. Values are taken at the node points of the grid

with lower resolution. Error in the v momentum equation is not included in the table

because it is on the order of 10−15; since that is the precision of the machine this value

is considered zero and therefore the convergence rate makes no sense.

Table 5.1: Short Time Simulation Convergence Study

Grids U error ζ error

101x51, 201x101 3.14753e-04 7.64931e-05
201x101, 401x201 7.87491e-05 1.88934e-05
Convergence Rate 1.99888 2.01745

5.1.2 Long Time Run Results

This test indicates the ability to successfully run the simulation for long periods of

time; long simulation times are important to allow the simulation time to reach equi-

librium. The simulation is allowed to run so that the surface elevation wave propagates

out of the system, and, due to the periodic boundary conditions, return to its original

position. The simulation runs for 100 seconds to return to the original position. The

convergence rates presented in Table 5.2 indicate that rates are slightly under second

order, but are still acceptable.

Table 5.2: Long Time Simulation Convergence Study

Grids U error ζ error

101x51, 201x101 2.00991e-03 1.24931e-03
201x101, 401x201 5.14955e-04 3.24580e-04
Convergence Rate 1.94449 1.96461
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Dissipation in the momentum equations causes the distortion of the wave due to

changes in velocity that vary from changes in surface elevation, as seen in Figure 5.3.

Solving the surface elevation equation alone, without a change in momentum, causes no

distortion of the wave and it propagates perfectly. The distortion causes one part of the

wave to steepen, and the other part of the wave to elongate. Diffusion will eventually

cause the wave to dissipate to a steady, still water level.

Figure 5.3: Surface elevation profile plot for initial surface wave, and after 100 seconds.

5.2 Chézy Friction Law

The Chézy friction law can be used to predict smooth, straight channel flow. It

assumes that the surface elevation is constant with the bed slope (i.e. constant depth),

and both are linear. The Chézy friction law is derived from assuming the momentum has

reached a steady state flow, and that the depth is constant across the field (D0). Taking

the height as some constant plus a slope in the direction of the flow in the x direction,
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and assuming no flow in the y direction, the problem can be reduced to the following,

∂tζ + u∂xD +D∂xu = 0,

∂tu+ u∂xu = g∂xζ −
g

DC2
u
√
u2.

Because we are assuming a steady state and constant depth, u∂xu , u∂xD, D∂xu

and ∂tu are zero. Further, ∂xζ = S, where S is the preset linear slope. Assume u > 0.

Since the continuity equation reduces to ∂tζ = 0, the equations reduce to,

u = C
√

SD0.

Using this guide to predict the flow in a straight channel with linear slope and

constant depth, we can compare the results to the simulation for verification. Figure 5.4

shows the Cartesian 100 meter by 50 meter grid used for this simulation.

Figure 5.4: Cartesian square grid, 100 meters by 50 meters.

The bottom slope, S, is set at 0.001 in the direction of x, the total depth is constant

at 10 meters, and no variation in the depth in the y direction. The eddy viscosity
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coefficient ν is set to 0.5 m2/s. Water density is 1000 kg/m3. The Chézy roughness

coefficient is 41.42 m1/2/s. The time step is 0.05 seconds.

Table 5.3 presents the convergence results as the simulation runs for 500, 1000,

1500 and 2000 seconds. The convergence rate for this problem shows convergence well

above second order, which is better than expected for this problem. Since the channel

configuration is presented on a Cartesian grid and the surface elevation is initialized to

a steady state solution (linear surface elevation slope matching the bottom slope), the

solution is exact in the spatial derivatives. Therefore, this example tests the convergence

rate for the time step method only and gives a great indication that this part of the

application accurately represents the equations.

Table 5.3: Chézy Friction Law Convergence Study

Time U error Convergence Rate 2p

500 seconds 1.24231e-01 3.38754
1000 seconds 1.18707e-02 3.40537
1500 seconds 1.12036e-03 3.40699
2000 seconds 1.05621e-04

5.3 Flow over a Seamount

Moving on past the simple channel examples for verification, this next simulation

tests some of the physical capabilities of the method. This example sets up a seamount

in the middle of a straight channel with flow in the x direction. Apart from the general

testing of the effect of bathymetry on flow, this simulation also is an exercise in the time

series development of the flow and how it logically unfolds as it goes from the initial state

to the steady state.

The square Cartesian grid that used for the Chézy friction law example is used again

for this simulation, and a seamount is inserted into the bathymetry at the center of the

grid. This grid is shown in Figure 5.5. The total depth of the fluid flow is 10 meters, with
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the height of the underwater peak being 2 meters. A slope of 0.001 was used to direct

the flow downhill in the direction of x, and no variation in the depth in the y direction.

The velocity was initialized at 2 m/s in the x direction. The eddy viscosity coefficient ν

was chosen to be 1 m2/s. Water density is 1000 kg/m3. The Chézy roughness coefficient

is set to 41.42 m1/2/s. The time step is 0.02 seconds.

Figure 5.5: Bottom bathymetry and grid for flow past a seamount, 100 x 50 meters. The
seamount is 2 meters in height.

Normal inflow and outflow boundary conditions are used. For inflow, v velocities

and surface elevation is set while u is extrapolated. For outflow, surface elevation is set

while u and v are extrapolated. For the outflow extrapolation, first order extrapolation

is used as a non-reflective boundary condition. Nonslip boundaries are used along the

sides of the channel where u and v are set to zero and surface elevation is extrapolated

from interior values.

The velocity and surface elevation behave as expected, see Figure 5.6. Velocity

u slows down ahead of the seamount, v diverts flow slightly around the sides of the

seamount, and the surface elevation rises ahead of the seamount and drops after the

seamount.
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Figure 5.6: Time development of the surface elevation for flow over a seamount. Left
column from top: simulation time 2.4, 3.6, and 8 seconds. Right column from top:
simulation time 10, and 40 seconds.
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The height of the peak underwater is 2 meters, which, in a 10 meter deep channel

changes the surface elevation only slightly. Increasing the slope causes an increase in the

magnitude of the perturbations of the surface elevation, and there is a point at which the

slope at the seamount causes a shock to the system (the Froude numbers become larger

than one). This application is not a study in shock, so results of this nature are not

shown here. But it is worth mentioning that if bottom bathymetry can create a situation

of shock if the slopes of the bathymetry are steep enough and the flow is initialized to

run into it.

The flow is initialized to 2 m/s in the x direction, downhill. The fluid builds up

on top of the peak initially until gravity forces the flow back down. A resultant wave

propagates through the system, both downstream (in the direction of the flow) and

upstream (against the direction of the flow). It is acceptable behavior for subsonic flow

to allow waves to propagate upstream, and this particular wave is two orders of magnitude

below compared to the total depth and does not act as a shock to the system. Once the

wave leaves the system upstream and downstream (upstream wave leaves the system

after the downstream wave), the system settles down into equilibrium flow where there

is a slight alteration in the flow pattern around the hill. Surface elevation has a slight

build up of fluid upstream of the bump, and a slight dip in elevation after it. Velocity

u slows down ahead of the bottom obstruction, speeds up on top of it and slows down

again after passing the seamount. Velocity v also does as expected by diverting flow

around the seamount, though the magnitude is small and from a vector standpoint does

not significantly alter the main direction of the flow.

Figure 5.6 shows the surface elevation as it develops from the initial state to the

steady state. Figure 5.6 at 2.4 seconds shows the initial reaction of the flow; flow is

uniform initially, so it builds up initially over the seamount and immediately falls down

to produce a wave. Figure 5.6 at 3.6 seconds shows the wave propagating both upstream

and downstream where upstream wave propagates slower than the downstream wave.

Upstream wave propagation is valid for subsonic flow and indicates agreement with the

physics. The waves then propagate out of the system, shown in Figure 5.6 for 8 seconds.
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The surface elevation oscillates after the waves leave the system in a diminished way

(Figure 5.6 at 10 seconds) until the system arrives at a steady state (Figure 5.6 at 40

seconds and beyond).

5.4 Generic River Geometry

Flow in a river channel is a traditional test case, and is excellent for testing the

behavior of the simulation on geometry that has expansion and contraction of the flow

domain. The simulation is set up with x direction flow, and nonslip boundaries along the

sides of the channel. For the inflow boundary condition, surface elevation and v velocity

are set. For the outflow, only the surface elevation is set. Along the nonslip boundaries,

u and v are set to zero. Values not set on the boundary are extrapolated, zero order for

everywhere except the outflow which is first order.

Figure 5.7: Generic river geometry grid, approximately 400 x 50 meters.

To drive the flow, a slope of 0.001 was added in the x direction, and the channel is 8

meters deep. Chézy friction again is set to 41.42 m1/2/s. The eddy viscosity coefficient ν

is 6 m2/s. Velocities are initialized as 2 meters per second for u, and the system is allowed

to run until a steady state is reached. Figure 5.7 shows the grid for this simulation. The

channel is approximately 50 meters by 400 meters with grid spacing approximately 1

meters. Figure 5.8 shows the steady state simulation results.
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Figure 5.8: From the top: surface elevation, u velocity and v velocity for generic river
geometry at steady state.
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The simulation results presented in Figure 5.8 are for the simulation time of 500

seconds. Results indicate agreement with what one would expect. Velocities for u create

a higher velocity channel in the center of the geometry, which does not wiggle with small

channel changes, but follows the straightest path. Nonslip boundary conditions along

the sides of the channel create this channel flow pattern. Velocities for v also behave as

expected, diverting flow in the direction of the channel as it curves.

Surface elevation is consistent with the flow pattern. For the slight changes in

channel direction, the surface elevation behaves like the straight channel flow where the

surface elevation has a linear slope consistent with the bottom slope of the bathymetry. In

places where the channel turns sharply, surface elevation is raised and lowered depending

on the flow: where the flow undergoes a change of direction, the elevation bulges to

accommodate the change.

5.5 Flow Past an Idealized Island

Flow past an idealized island is an important test case on the way to exploring

real bathymetry of the Bahia de Todos Santos. The set up for this simulation run is an

annulus grid where the ends of the grid meet are periodic, the inner boundary is a nonslip

wall and the outer boundary is an inflow/outflow mixed boundary. Figure 5.9 shows the

annulus grid. The mixed boundary uses the direction of the normal flow to determine

whether the flow is coming into or leaving the system. Once the direction of the flow

is determined, the appropriate boundary condition is assigned: inflow assigns u velocity

component and the surface elevation, outflow only assigns the surface elevation. Values

that are not assigned are extrapolated from interior values like previous simulations.

Flow is in the x direction, initialized at 3 m/s and no y direction velocity. A gentle

slope of 0.001 is in the x direction to help drive the flow. Chézy friction for smooth

channel flow is used at 41.42 m1/2 per second, water density at 1000 Kg/m3, depth at 25

meters across the domain. Simulations are run for 20,000 seconds.
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Figure 5.9: Annulus grid for flow past an idealized island.

Artificial viscosity in the continuity equation is to control some error on the outer

boundary due to insufficient boundary conditions. Error is generated when the direction

of the incoming flow transitions between inflow and outflow (inflow moves from normal

to parallel to the boundary).

Simulation results reveal an excellent vortex formation. The formation of the vortices

behind the island is controlled by the viscosity; the size and general shape of the vortices

can be changed by changing the value of the viscosity coefficient. It is unclear whether this

behavior has the capability to demonstrate vortex shedding. To explore this, simulations

would need been to be run for long periods of simulation time to allow the vortices to

begin oscillating.

The results show, in Figures 5.10 through 5.13, separate runs comparing different

eddy viscosity coefficient values. The first run uses the value of 20 m2/s and produces

a large recirculation area with the large eddy viscosity coefficient value. The second,

third and fourth runs at 5 m2/s, 1 m2/s and 0.5 m2/s coefficients show a reduction in

the recirculation field. The results show the circulation pattern behind the island as it

changes with the eddy viscosity coefficient, and is presented by the velocity and by the

vorticity (z component of curl). The behavior of the varying eddy viscosity coefficient is

important because the value is arbitrarily set. As seen in this example run, the effect of
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the value of the eddy viscosity coefficient has a distinct effect on the flow pattern and it

is necessary, for valid scientific simulations using this model, to use an appropriate value

(for further discussion on this topic, see Section 2.2).
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Figure 5.10: Velocity (top) and vorticity (bottom) plots for flow past an idealized island
for eddy viscosity 20 m2/s. These figures indicate the large circulation region associated
with the high eddy viscosity.
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Figure 5.11: Velocity (top) and vorticity (bottom) plots for flow past an idealized island
for eddy viscosity 5 m2/s. These figures indicate a reduction in the circulation region.
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Figure 5.12: Velocity (top) and vorticity (bottom) plots for flow past an idealized island
for eddy viscosity 1 m2/s. These figures indicate a much smaller circulation region for
the smaller eddy viscosity.
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Figure 5.13: Velocity (top) and vorticity (bottom) plots for flow past an idealized island
for eddy viscosity 0.5 m2/s. These figures exhibit some additional vortex formation close
to the island.
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CHAPTER 6

OVERTURE AND THE BAHIA DE TODOS SANTOS

Overture is a C++ software framework developed at Lawrence Livermore National

Laboratory [5, 7]. It includes tools for developing grids, plotting graphics, and a develop-

ment library to increase the feasibility of developing large scale overset grid solvers. It is

written mostly in C/C++, and for this study, Overture and its components are compiled

and run on a Linux-Pentium workstation. Further description of Overture and directions

on installing the framework are located on the web at http://www.llnl.gov/casc/Overture/.

Figure 6.1: Overset grid example, an annulus in a straight channel.

The Overture framework is designed to handle multiple grids and their interaction

automatically. The interpolation of data from one grid to another uses biquadratic in-

terpolation (a three by three stencil), which allows second order convergence for second

order differential equations [7]. The generated grid file, generated using Ogen (Overture’s

grid generator), contains the information Overture uses to determine size and interaction

of grids. Native Overture operators can be used, if desired, to handle the differencing

terms (i.e. the function u.x() takes the x derivative of u and the default is second order,

centered difference). Metric terms are also automatically taken into account. Therefore,
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the Cartesian form of the equations can be programmed, further simplifying coding.

Figure 6.2: Close up of the overset grid, including interpolation points.

To simulate the Bahia de Todos Santos, a version of the Adams predictor corrector

method previously described in this study is re-implemented in Overture using the op-

erators provided, and the Cartesian form of the equations. Artificial viscosity is again

implemented to help smooth errors that arise from a fully centered grid scheme.

The Bahia de Todos Santos grid is generated using Ogen. Data points were collected

from the bathymetry data file using a Matlab script that outlines the coast and island.

These data points were placed into an Ogen command script to generate splines from the

points that were then used to create the final grid. Three sub-grids have been generated

to cover the bay: one curvilinear grid to go around the island, one curvilinear grid to cover

the coastline, and one large Cartesian grid to cover the rest of the bay. The bathymetry

depth information was not used other than to generate the coastline, instead a constant

depth is used across the bay.

Figure 6.3 shows the full grid representation of the Bahia de Todos Santos, created

with Ogen. Resolution on the grid is on average 200 by 200 meters per grid cell, with

variations for smaller and larger grid cells near the coastline. There are 24,836 grid cells

on the grid, and 968 interpolation points for the grid overlapping.
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Figure 6.3: Overlapping grid of the Bahia de Todos Santos.
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Boundary conditions for the bay simulations are extrapolated from interior points

on open boundaries except the western boundary for which the surface elevation is des-

ignated by the M2 tide (0.487 meter elevation, 12.42 hour period, and 270 degree phase).

Along the coastline and island, nonslip boundary conditions are used. Wind forcing is

used to drive the flow from the North in addition to the M2 tide, and the value is 0.034

N/m2 as given by [9]. The Chézy friction coefficient used is 57.18 m1/2/s, the depth is

set to a constant 60 meters across the grids, and ν eddy viscosity is arbitrarily set at 10

m2/s to compare results from the previous study on the bay [9]. Results of the previous

study on the bay are presented in Figure 6.4.

This simulation is run for 1,000,000 time steps of 0.2 seconds, which is roughly 55.6

hours. Simulations run on bays of this size are typically run for weeks or months of

simulation time, so the run presented here is not considered to be completely past the

transient phase. But the results shown here indicate a tendency towards a solution state

that is dependent on the tides; this is the behavior expected for longer run simulations.

The advective time constraint on the system due to relatively small grid spacing around

the island and parts of the coastline make the simulation computationally expensive; the

time taken to run the simulation results presented took seven days on a desktop Pentium

Linux machine (unoptimized code).

One can see, comparing previous results with current results, that behavior is more

detailed with the finer grid as grid spacing is reduced from 1 kilometer to 200 meters.

However, the previous study includes the bottom bathymetry in the simulation whereas

this study uses a constant depth. Therefore, a detailed comparison of results is not appli-

cable. There are recirculation patters that emerge, seen in Figure 6.4, from the transition

to low tide (as the water ebbs) apparent in this simulation that are not presented in pre-

vious study. These recirculation patters (the largest around the northern entrance) make

sense in terms of physical behavior, but it is necessary to validate the computational

scheme against the physics of the problem before any real scientific exploration can be

gained here.
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Figure 6.4: Results of previous simulation study of the Bahia de Todos Santos [9]. F.J.
Gavidia Medina Espinoza, M.L.Argote and A. Amador Buenrostro. Wind- induced cir-
culation in Todos Santos Bay, B.C., Mexico. Atmosphera, 4:101-115, 1991.

The arbitrary eddy viscosity coefficient chosen for this simulation directly affects

the recirculation patters (as show by the flow past an idealized island example run), and

no other means of selecting the value for the eddy viscosity coefficient is presented in

this study. Another means of selecting this value, either by algebraic expression or by

configuring it to reflect the actual behavior, needs to be included for this simulation to

make any real, physical sense. It is evident, however, that there is potential for this

application to have an impact on real scientific discovery for this bay, assuming bottom

bathymetry is included. Figures 6.5 through 6.9 show results for other tidal stages over

the 12.42 hour period: low tide, transition to high tide, high tide, and transition back to

low tide again.
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Figure 6.5: Flow through the bay forced by M2 tide and wind from the North. Flow is
in a transition state moving from high tide to low tide, 40.6 hours.
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Figure 6.6: Flow through the bay. Flow is at low tide, 43.3 hours.
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Figure 6.7: Flow through the bay. Flow is in a transition state moving from low tide to
high tide, 46.7 hours.
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Figure 6.8: Flow through the bay. Flow is at high tide, 49.7 hours.
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Figure 6.9: Flow through the bay. Flow is in transition from high tide to low tide, 52.8
hours.
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CHAPTER 7

CONCLUSION

There are many drawbacks when implementing any system of equations, both in

the selection of the equations and in the discretization. The shallow water equations

are limited to a certain set of physical problems in accordance with the assumptions

mentioned in the introduction. There are also the limitations of computer space and

speed, which even in this era of ever-increasing computational power, still limits problem

size and complexity.

With this in mind, it is still possible to draw meaningful and interesting conclusions

about the behavior of fluid flow on large scales by performing various simulations like

the ones done here. While this study has mainly focused on the update of an original

study done in the 1970s [23], and has neglected the important — and daunting — task

of verification against field data. The reason for this is because this study is in computa-

tional science and not oceanography. This oversight should be forgiven by the attempts

to choose some example and perform a mental check on the behavior, such as for the

generic river, idealized island and flow over a seamount. The focus was to take the model

and apply current techniques to expand the abilities of the solver; one that was chiefly

accomplished when the equations were transformed into curvilinear coordinates.

This study initially started to implement the ADI technique to solve the transformed

equations, but was eventually passed over in favor of a straight-forward explicit method.

The problems with adapting the ADI method to suit the new transformed equations is

that it is no longer clear which terms should be evaluated at the advanced time step and

which at the current time step (and would require the prediction, probably by means of

an iterative technique, of advanced time step values that could not be separated from

the right hand side). Coupling this increase in complexity to the new inclusion of the

viscosity terms of the momentum equations (which were not included in the original

study), and the idea was dropped. The main drawback of the explicit method is the

time step constraint which was thought an acceptable trade-off for the ease of creating
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an explicit finite difference scheme.

Despite the drawbacks mentioned here, however, there is potential for the method

presented here to be used for valid scientific investigation. Any further study along these

lines should begin with the addition of a more meaningful turbulence model. It seems

impossible to appropriately describe the complexities of fluid flow without sufficiently

managing the way viscosity affects the fluid with changes in velocity and depth. Likewise,

boundary conditions and the effects of the flow near shore need further attention to attain

a more realistic physical agreement. The use of artificial viscosity in the surface elevation

equation for smoothing high frequency oscillation error (checker boarding) on complicated

geometries should be avoided. Staggering the grid instead of using a fully center grid

done here should aid this problem.
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TERM DEFINITIONS

These are the term definitions, unless specifically stated otherwise by text:

Term definitions

Term Definition Units

u, v Depth-averaged velocity vectors for flow m/s

ζ Free surface elevation from still water level m

x, y, z Cartesian coordinates m

t Time s

D Total water depth (D = h + ζ) m

h Water depth measured down from still water level m

ξ, η Computational domain coordinates

J Jacobian from transformation

τb Bottom sheer stress

τw Wind stress N/m2

fc Coriolis force

ρ Water density Kg/m3

α Numerical viscosity constant

C Chézy friction coefficient m1/2/s

g Gravity m/s2

ν Kinematic eddy viscosity m2/s

xξ, xη, yξ, yη Metric terms from transformation
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APPENDIX B

FINITE DIFFERENCE SCHEME - L OPERATORS
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FINITE DIFFERENCE SCHEME - L OPERATORS

The simulation uses the method of lines. The Adams Predictor Corrector second

order finite difference scheme is used for the time step. All spatial derivatives are repre-

sented by second order, centered differences. For example,

uξ
n =

uj+1,k
n + uj−1,k

n

2∆ξ
. (B.1)

The Adams predictor step is,

uj,k
p = uj,k

n +
∆t

2

[

3(Ln
u)j,k −

(

Ln−1
u

)

j,k

]

, (B.2)

vj,k
p = vj,k

n +
∆t

2

[

3(Ln
v )j,k −

(

Ln−1
v

)

j,k

]

, (B.3)

ζj,k
p = ζj,k

n +
∆t

2

[

3
(

Ln
ζ

)

j,k
−
(

Ln−1
ζ

)

j,k

]

. (B.4)

And the Adams corrector step is,

uj,k
n+1 = uj,k

n +
∆t

2

[

(Lp
u)j,k + (Ln

u)j,k

]

, (B.5)

vj,k
n+1 = vj,k

n +
∆t

2

[

(Lp
v)j,k + (Ln

v )j,k

]

, (B.6)

ζj,k
n+1 = ζj,k

n +
∆t

2

[

(

Lp
ζ

)

j,k
+
(

Ln
ζ

)

j,k

]

, (B.7)

where,
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Lu =
1

J
[yηuuξ − yξuuη + xξvuη − yηvuξ] +

g

J
[yηζξ − yξζη]− fcv−

τwx − τbx
ρD

−Tx, (B.8)

Lv =
1

J
[yηuvξ − yξuvη + xξvvη − yηvvξ] +

g

J
[xξζη − xηζξ] + fcu−

τwy − τby
ρD

− Ty, (B.9)

Lζ =
1

J
[yη (Duξ + uDξ)− yξ (Duη + uDη) + xξ (Dvη + vDξ)− xη (Dvξ + vDη)] ,(B.10)

and where,

Tx =
1

ρDJ

[

yη (TxxD)ξ − yξ (TxxD)η + xξ (TxyD)η − xη (TxyD)ξ

]

, (B.11)

Ty =
1

ρDJ

[

yη (TxyD)ξ − yξ (TxyD)η + xξ (TyyD)η − xη (TyyD)ξ

]

. (B.12)
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ABSTRACT

This paper presents an exploration of a numerical scheme solving the curvilinear form

of the depth averaged shallow water equations. The numerical method solves the depth

averaged shallow water equations on curvilinear grids using an explicit, Adams predictor

corrector, finite difference, time stepping scheme, with a special extension of the scheme to

Overture. Overture is a software framework for writing composite grid solvers in C++,

developed by Lawrence Livermore National Laboratory. In order to verify the finite

difference scheme is solving the equations correctly, resolution and time development

studies are used to measure convergence rates. Several simplified physical test cases for

single grids are presented to explore the behavior of the numerical method. An extension

of the numerical method to Overture in order to implement composite grids is used to

simulate Bahia de Todos Santos, Baja California, Mexico, and results for this simulation

are presented.




